The Daya Bay Experiment and the Quest for θ_{13}

David E. Jaffe for the Daya Bay Collaboration

Why θ_{13} ?

$$|\nu_f\rangle=\sum_i U_{fi}^*|\nu_i\rangle$$
 Interaction eigenstates \neq Mass eigenstates

$$c_{ij} \equiv \cos \theta_{ij}, s_{ij} \equiv \sin \theta_{ij}$$

$$U_{if} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\theta_{23} pprox 45^\circ$

Atmospheric ν Accelerator ν $heta_{13} < 10^\circ$ Short-baseline Reactor u

Short-baseline Reactor ν Future accelerator ν $\theta_{12} \approx 35^{\circ}$

Solar ν

Long-baseline Reactor ν

Daya Bay design sensitivity: $\sin^2 2\theta_{13} < 0.01 \ (90\%CL)$

Short-baseline Reactor $\bar{\nu}_e$ is a disappearance experiment:

$$\mathcal{P}(ar{
u}_{
m e}
ightarrowar{
u}_{
m e})pprox 1-\sin^22 heta_{13}\sin^2(1.27\Delta m_{31}^2L/E)$$

(ロ) (部) (注) (注) (注) の(

Chooz: Best experimental limit on $heta_{13}$

5 ton target exposed to 2 reactors, total thermal power 8.5 GW, 1 km baseline Phys.Lett.B**466** (1999) 415

Recent global ν analysis arXiv:0710.5027

Getting to $\sin^2 2\theta_{13} < 0.01$

- Increase statistics: 4×20 ton target at far site, $11.6 \text{ GW}_{\rm th}$ (17.4 $\text{GW}_{\rm th}$ in 2011). $1 \text{ GW}_{\rm th} = 2 \times 10^{20} \bar{\nu}_{\rm e}/{\rm s}$
- Suppress cosmogenic background: Go deeper.
- Reduce systematic uncertainties: Deploy "identical" near/far detector pairs.
- Optimize baseline

$ar{ u}_{ m e}$ detection method

- Inverse-beta decay: $\bar{\nu}_e p
 ightarrow e^+ n$
- Target: 0.1% Gd-loaded Liquid Scintillator $nGd \rightarrow Gd^* \rightarrow Gd + \gamma s(8 \text{ MeV})$
- $\sim 30 \mu s$ mean neutron capture time
- Delayed coincidence provides powerful background rejection

Reactor anti-neutrino spectrum

Anti-neutrino Detectors (ADs)

- 8 identical detectors: Reduce systematic uncertainties
- Each detector 3 nested cylinders:
 - 1 Inner: $20t \text{ GdLS}^a \text{ (d=3m)}$
 - 2 Mid: 20t LS ^b (d=4m)
 - 3 Outer: 40t mineral oil (d=5m
- Top/bottom reflectors
- resolution

Mineral oil

Liquid Scint.

Steel tank

5m

^bLS=Liquid Scintillator

Cosmic veto and shielding

- Multiple muon veto detectors
- Water Čerenkov
 - ADs submerged in water (≥ 2.5m shielding)
 - Inner/Outer regions optically separated by Tyvek sheets
 - 8-inch PMTs on frames (289/near, 384/far site)
- RPC: Provides independent veto above water pool

Reducing systematic uncertainties

Detector Uncertainty Source		Baseline	Goal	Chooz Experience
Number of protons		0.3%	0.1%	0.8%
	Energy cuts	0.2%	0.1%	0.8%
	H/Gd ratio	0.1%	0.1%	1.0%
Detection	Time cut	0.1%	0.03%	0.4%
Efficiency	Neutron mult.	0.05%	0.05%	0.5%
	Trigger	0.01%	0.01%	0.01%
	Live time	< 0.01%	< 0.01%	< 0.01%
Total Uncertainty		0.38%	0.18%	1.7%
		Two detector relative uncertainty		One detector absolute uncertainty

Requirements on systematic uncertainties

$$\frac{\textit{N}_{\rm f}}{\textit{N}_{\rm n}} = \left(\frac{\textit{N}_{\rm p,f}}{\textit{N}_{\rm p,n}}\right) \left(\frac{\textit{L}_{\rm f}}{\textit{L}_{\rm n}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \frac{\mathcal{P}(\textit{L}_{\rm f},\textit{E};\sin^2 2\theta_{13})}{\mathcal{P}(\textit{L}_{\rm n},\textit{E};\sin^2 2\theta_{13})}$$
Measured ratio of Number of Efficiency ratio rates

- Attain $\leq 0.3\%$ on proton ratio by monitoring filling mass with load cells(accuracy < 0.02%) and Coriolis mass flowmeters(accuracy < 0.1%). Fill ADs in pairs.
- Attain $\leq 0.2\%$ on efficiency ratio with calibration

Recon. Energy (MeV

Detector efficiency

Simulation: Achieving 0.2% eff'y systematic, implies knowing e^+ threshold to 2% (easy) and relative neutron threshold to 1% (more difficult)

- Positron energy cuts at 1 & 8 MeV.
 Calibrate e⁺ threshold with ⁶⁸Ge source.
- Neutron capture energy cut at 6
 MeV. Calibrate with spallation nGd
 capture over full fiducial volume +
 weekly deployment of AmC source
 on 3 vertical axes.

Background processes and rates

Background due to natural radioactivity & cosmic ray interactions

- Muon interactions in the LS produce $^9\mathrm{Li}/^8\mathrm{He}$. A β^-, n emitter with Q=13 MeV, τ =0.178s. Expect bkgd/signal \sim 0.003. Can be measured with data (NIMA**564**(2005)081801).
- 2 Muon interactions outside AD in water and rock produce "fast" neutrons that interact in GdLS, LS. Expect bkgd/signal \sim 0.001. Can estimate rate from data and simulation.
- Accidental coincidences of radioactive background with cosmogenic background. Expect bkgd/signal $\sim\!0.003$. Calculable from observed singles rates.

Oscillation signal for $\sin^2 2\theta_{13} = 0.01$

Optimize baseline

$$1 - \mathcal{P}(\bar{\nu}_{\rm e} \to \bar{\nu}_{\rm e}) = \sin^2 2\theta_{13} \sin^2 \frac{1.27 \Delta m_{31}^2 L}{E} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{1.27 \Delta m_{21}^2 L}{E}$$

	Expt'l site		
Reactors	DyB	LA	Far
DayaBay	363	1348	1986
LingAo I	857	481	1618
LingAo II	1307	526	1613
Overburden	98	112	355

Expected sensitivity

90% CL limit on $\sin^2 2\theta_{13}$ assuming baseline systematics

$$\Delta m^2 = 0.0025 \text{ eV}^2$$

3 years of data

The Daya Bay Collaboration

Europe (3) (9) Political Map of the World, June 1999 JINR, Dubna, Russia Kurchatov Institute, Russia Charles University, Czech Republic North America (14)(~73) Asia (18) (~125) BNL, Caltech, George Mason Univ., IHEP, Beijing Normal Univ., Chengdu Univ. LBNL, Iowa State Univ., Illinois Inst. Tech., of Sci. and Tech., CGNPG, CIAE, Dongguan Princeton, RPI, UC-Berkeley, UCLA, Polytech. Univ., Nanjing Univ., Nankai Univ., Univ. of Houston, Univ. of Wisconsin, Shandong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Virginia Tech., Univ. of Hong Kong, Univ. of Illinois-Urbana-Champaign Anterchica Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

~207 collaborators

Status

Nov07 Began civil construction

Aug08 CD-3b Approval

Mar09 Occupancy of onsite assembly building

Vinter09 Install AD pair in Daya Bay near site

Vinter10 Begin data taking with near and far

Quest for θ_{13}

Other physics with Daya Bay

Possible non- θ_{13} topics

- $\bar{\nu}$ decay (appearance measurement)
- CPT violation via sidereal variations in IBD rate
- lacksquare atmospheric u and upward-going muons
- supernova detection
- precise determination of reactor spectrum
- 6 neutron (and alpha) emission after μ^- capture: multiplicity and/or energy spectra
- measurement of muon spallation products at three depths
- cosmic ray air showers
- g cosmic muon charge ratio

The last slide

- The Daya Bay Reactor Neutrino Experiment will be able to provide the most accurate measurement of $\sin^2 2\theta_{13}$ in the next few years.
- The experiment is being funded. Civil construction and detector fabrication is progressing.

See hep-ex/0701029 for more details.

Many thanks to my Daya Bay collaborators for their help in preparing this presentation.

Extra

Intentionally blank

Prototype Antineutrino Detector Performance

2-zone Prototype at IHEP

- · 0.5 ton unloaded LS
- · 45 8" PMTs with reflecting top and bottom

Prototype filled with 0.1% GdLS

IHEP Prototype Filled With 0.1% Gd-LS

Cancellation of Flux Uncertainty with Multiple Reactors

Q: Cancellation $\bar{\nu}_e$ flux uncertainty with multiple reactor sites?

A: Deweight the oversampled cores by a factor α :

Ratio =
$$\alpha \frac{\text{Near1}}{\text{Far}} + \frac{\text{Near2}}{\text{Far}}$$

$$\alpha = \frac{(L_{22}^2 L_{1F}^2)^{-1} - (L_{21}^2 L_{2F}^2)^{-1}}{(L_{11}^2 L_{2F}^2)^{-1} - (L_{12}^2 L_{1F}^2)^{-1}}$$

For 4(6) cores, $\alpha=0.34(0.39)$ and 2% reactor flux uncertainty is reduced to 0.035% (0.1%). Slightly more complicated expression if flux/reactor differs.

Sensitivity of rate and shape analyses

3 years Daya Bay running Solid: 0.38% baseline syst. unc. Dashed: 0.18% goal syst. unc.